рабочая программа 8 класс алгебра_59771

Муниципальное Бюджетное Общеобразовательное Учреждение

«Ханинская средняя общеобразовательная школа»

РАССМОТРЕНО УТВЕРЖДАЮ

на методическом объединении учителей Директор _________ Л.А.Бобкова

Физики и математики«____» _____________ 2013 г

Протокол №1

от « » августа 2013 г

Руководитель МО

А.Г. Кондратьева

СОГЛАСОВАНО

Заместитель директора по УВР

Е.В. Максимова

«___» __________ 2013 г

РАБОЧАЯ ПРОГРАММА

ПО ______алгебре_________

__8__ КЛАСС

2013-2014 учебный год

Разработчик: Кондратьева Анна Геннадьевна

Учитель Кондратьева Анна Геннадьевна

Ханино, 2013 г

Пояснительная записка

Данная рабочая программа ориентирована на учащихся 8 класса и реализуется на основе следующих документов:

Программа общеобразовательных школ: “Программы общеобразовательных школ: Математика 7-9 кл.”/ Сост. Т.А.Бурмистрова. М «Просвещение» 2011г.

Стандарты второго поколения. Примерные программы по учебным предметам. Математика 5 – 9 классы: проект – 2-е изд. – М.: Просвещение, 2010.

Программа соответствует учебнику «Алгебра. 8 класс» / Ю.Н. Макарычев, Н.Г. Миндюк и др.; под ред. С.А. Теляковского. М.: Просвещение, 2002.

Изучение математики на ступени основного общего образования направлено на достижение следующих целей:

овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

В ходе освоения содержания курса учащиеся получают возможность:

развить представления о числе и роли вычислений в человеческой практике;

сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;

овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;

изучить свойства и графики функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;

получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;

сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.

Место предмета в федеральном базисном учебном плане

Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение алгебры отводиться 3 часа в неделю, всего 105 часов в год, в том числе на контрольные работы 10 часов. На итоговое повторение в 8 классе по алгебре в конце года 9 часов, остальные часы распределены по всем темам.

Учебно-тематический план. 8 класс

(3 часа в неделю, всего 105 часов).

№ п/п

Название темы

Количество часов

Контрольная работа

1

Рациональные выражения

23

№1, № 2

2

Квадратные корни.

20

№3, №4

3

Квадратные уравнения.

21

№5, №6

4

Неравенства.

17

№7, №8

5

Степень с целым показателем.

14

№9

6

Повторение. Решение задач.

10

Итоговая

Итого

105

10

Содержание тем учебного курса

1. Рациональные дроби (23 ч)

Рациональная дробь. Основное свойство дроби, сокращение дробей.

Тождественные преобразования рациональных выражений. Функция EMBED Equation.3 и ее график.

Основная цель – выработать умение выполнять тождественные преобразования рациональных выражений.

Так как действия с рациональными дробями существенным образом опираются на действия с многочленами, то в начале темы необходимо повторить с учащимися преобразования целых выражений.

Главное место в данной теме занимают алгоритмы действий с дробями. Учащиеся должны понимать, что сумму, разность, произведение и частное дробей всегда можно представить в виде дроби. Приобретаемые в данной теме умения выполнять сложение, вычитание, умножение и деление дробей являются опорными в преобразованиях дробных выражений. Поэтому им следует уделить особое внимание. Нецелесообразно переходить к комбинированным заданиям на все действия с дробями прежде, чем будут усвоены основные алгоритмы. Задания на все действия с дробями не должны быть излишне громоздкими и трудоемкими.

При нахождении значений дробей даются задания на вычисления с помощью калькулятора. В данной теме расширяются сведения о статистических характеристиках. Вводится понятие среднего гармонического ряда положительных чисел.

Изучение темы завершается рассмотрением свойств графика функции EMBED Equation.3 .

2. Квадратные корни (20 ч)

Понятие об иррациональных числах. Общие сведения о действительных числах. Квадратный корень. Понятие о нахождении приближенного значения квадратного корня. Свойства квадратных корней. Преобразования выражений, содержащих квадратные корни. Функция EMBED Equation.3 ее свойства и график.

Основная цель – систематизировать сведения о рациональных числах и дать представление об иррациональных числах, расширив тем самым понятие о числе; выработать умение выполнять преобразования выражений, содержащих квадратные корни.

В данной теме учащиеся получают начальное представление о понятии действительного числа. С этой целью обобщаются известные учащимся сведения о рациональных числах. Для введения понятия иррационального числа используется интуитивное представление о том, что каждый отрезок имеет длину и потому каждой точке координатной прямой соответствует некоторое число. Показывается, что существуют точки, не имеющие рациональных абсцисс.

При введении понятия корня полезно ознакомить учащихся с нахождением корней с помощью калькулятора.

Основное внимание уделяется понятию арифметического квадратного корня и свойствам арифметических квадратных корней. Доказываются теоремы о корне из произведения и дроби, а также тождество EMBED Equation.3 , которые получают применение в преобразованиях выражений, содержащих квадратные корни. Специальное внимание уделяется освобождению от иррациональности в знаменателе дроби в выражениях вида EMBED Equation.3 EMBED Equation.3 . Умение преобразовывать выражения, содержащие корни, часто используется как в самом курсе алгебры, так и в курсах геометрии, алгебры и начал анализа.

Продолжается работа по развитию функциональных представлений учащихся. Рассматриваются функция EMBED Equation.3 , ее свойства и график. При изучении функции EMBED Equation.3 показывается ее взаимосвязь с функцией EMBED Equation.3 , где x ≥ 0.

3. Квадратные уравнения (21 ч)

Квадратное уравнение. Формула корней квадратного уравнения. Решение рациональных уравнений. Решение задач, приводящих к квадратным уравнениям и простейшим рациональным уравнениям.

Основная цель – выработать умения решать квадратные уравнения и простейшие рациональные уравнения и применять их к решению задач.

В начале темы приводятся примеры решения неполных квадратных уравнений. Этот материал систематизируется. Рассматриваются алгоритмы решения неполных квадратных уравнений различного вида.

Основное внимание следует уделить решению уравнений вида ах2 + bх + с = 0, где а ≠ 0, с использованием формулы корней. В данной теме учащиеся знакомятся с формулами Виета, выражающими связь между корнями квадратного уравнения и его коэффициентами. Они используются в дальнейшем при доказательстве теоремы о разложении квадратного трехчлена на линейные множители.

Учащиеся овладевают способом решения дробных рациональных уравнений, который состоит в том, что решение таких уравнений сводится к решению соответствующих целых уравнений с последующим исключением посторонних корней.

Изучение данной темы позволяет существенно расширить аппарат уравнений, используемых для решения текстовых задач.

4. Неравенства (17 ч)

Числовые неравенства и их свойства. Почленное сложение и умножение числовых неравенств. Погрешность и точность приближения. Линейные неравенства с одной переменной и их системы.

Основная цель – ознакомить учащихся с применением неравенств для оценки значений выражений, выработать умение решать линейные неравенства с одной переменной и их системы.

Свойства числовых неравенств составляют ту базу, на которой основано решение линейных неравенств с одной переменной. Теоремы о почленном сложении и умножении неравенств находят применение при выполнении простейших упражнений на оценку выражений по методу границ. Вводятся понятия абсолютной погрешности и точности приближения, относительной погрешности.

Умения проводить дедуктивные рассуждения получают развитие как при доказательствах указанных теорем, так и при выполнении упражнений на доказательства неравенств.

В связи с решением линейных неравенств с одной переменной дается понятие о числовых промежутках, вводятся соответствующие названия и обозначения. Рассмотрению систем неравенств с одной переменной предшествует ознакомление учащихся с понятиями пересечения и объединения множеств.

При решении неравенств используются свойства равносильных неравенств, которые разъясняются на конкретных примерах. Особое внимание следует уделить отработке умения решать простейшие неравенства вида ах > b, ах < b, остановившись специально на случае, когда а < 0.

В этой теме рассматривается также решение систем двух линейных неравенств с одной переменной, в частности таких, которые записаны в виде двойных неравенств.

5. Степень с целым показателем. (14 ч)

Степень с целым показателем и ее свойства. Стандартный вид числа. Приближенный вычисления.

Основная цель – выработать умение применять свойства степени с целым показателем в вычислениях и преобразованиях.

В этой теме формулируются свойства степени с целым показателем. Метод доказательства этих свойств показывается на примере умножения степеней с одинаковыми основаниями. Дается понятие о записи числа в стандартном виде. Приводятся примеры использования такой записи в физике, технике и других областях знаний.

6. Повторение (10 ч)

Требования к математической подготовке учащихся 8 класса

В результате изучения алгебры ученик должен знать/понимать

существо понятия математического доказательства; примеры доказательств;

существо понятия алгоритма; примеры алгоритмов;

как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

как потребности практики привели математическую науку к необходимости расширения понятия числа;

вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

уметь

выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;

применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;

решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним;

решать линейные неравенства с одной переменной и их системы;

находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

описывать свойства изученных функций, строить их графики;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;

моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;

описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;

интерпретации графиков реальных зависимостей между величинами.

Учебно-методическое обеспечение

Учебно – методический комплект

1.Макарычев Ю.Н. и др. Алгебра. Учебник для 7 класса общеобразовательных учреждений. М., «Просвещение», 2008.

2. Программы общеобразовательных учреждений. Алгебра. 7-9 классы. Составитель: Бурмистрова Т.А. – М.: Просвещение, 2009 г.

3. Дидактические материалы по алгебре.7 класс. / Ю.Н. Макарычев, Н.Г. Миндюк, Л.М. Короткова. / М: Просвещение, 1997 – 160с.

4. Учебник: Алгебра 8 класс. Авторы: Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова. Москва. Просвещение, 2002г.

5.Дидактические материалы по алгебре. 8 класс. Авторы: В. И. Жохов, Ю. Н Макарычев, Н. Г. Миндюк.Москва. Просвещение, 2005г.

6. Ю.Н.Макарычев, Н.Г.Миндюк «Алгебра. Учебник для 9 класса общеобразовательных учреждений», М., «Просвещение»,2007.

Материал комплекта полностью соответствует «Базовой программе по математике для средней общеобразовательной школы минимальным требованиям к содержанию образования.

Перечень ресурсов

1. Компьютер

2 . HYPERLINK «http://festival.1september.ru» http://festival.1september.ru

3. HYPERLINK «http://ege.edu.ru» http://ege.edu.ru

4. HYPERLINK «http://window.edu.ru» http://window.edu.ru

5. HYPERLINK «http://wwww.mathege.ru» http://wwww.mathege.ru

Литература

1.Макарычев Ю.Н. и др. Алгебра. Учебник для 7 класса общеобразовательных учреждений. М., «Просвещение», 2008.

2. Программы общеобразовательных учреждений. Алгебра. 7-9 классы. Составитель: Бурмистрова Т.А. – М.: Просвещение, 2009 г.

3. Дидактические материалы по алгебре.7 класс. / Ю.Н. Макарычев, Н.Г. Миндюк, Л.М. Короткова. / М: Просвещение, 1997 – 160с.

4. Учебник: Алгебра 8 класс. Авторы: Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова. Москва. Просвещение, 2002г.

5.Дидактические материалы по алгебре. 8 класс. Авторы: В. И. Жохов, Ю. Н Макарычев, Н. Г. Миндюк.Москва. Просвещение, 2005г.

6. Ю.Н.Макарычев, Н.Г.Миндюк «Алгебра. Учебник для 9 класса общеобразовательных учреждений», М., «Просвещение»,2007.

Календарно-тематическое планирование

Уроков алгебры

(предмет)

Классы:_____8 класс___________________________________________________

Учитель:___________Кондратьева Анна Геннадьевна____________________

Кол-во часов за год:

Всего ___105_____________________

В неделю ____3 часа_________

Плановых контрольных работ:__10_____.

Планирование составлено на основе

Программа общеобразовательных школ: “Программы общеобразовательных школ: Математика 7-9 кл.”/ Сост. Т.А.Бурмистрова. М «Просвещение» 2011г.

Стандарты второго поколения. Примерные программы по учебным предметам. Математика 5 – 9 классы: проект – 2-е изд. – М.: Просвещение, 2010.

Учебник Алгебра: Учеб. для 8 кл. общеобразоват. учреждений / Ю.Н. Макарычев, Н.Г. Миндюк и др.; под ред. С.А. Теляковского. М.: Просвещение, 2002.

Тематическое планирование по алгебре в 8 классе

№ урока

Тема и содержание учебного материала урока.

Количество часов

Дата

Рациональные выражения

23

1

Рациональные выражения

2

Рациональные выражения.

3

Рациональные выражения.

4

Основное свойство дроби. Сокращение дробей.

5

Основное свойство дроби. Сокращение дробей.

6

Основное свойство дроби. Сокращение дробей.

7

Сложение и вычитание дробей с одинаковыми знаменателями.

8



Страницы: Первая | 1 | 2 | 3 | Вперед → | Последняя | Весь текст